
Marooned on Mars: Mind-spinning books for software
engineers

by William J. Clancey

Chief Scientist, Human-Centered Computing
NASA/Ames Research Center

Moffett Field, CA 94035 (*)

(*) On leave from the Institute for Human-Machine Cognition, University

of West Florida, Pensacola.

To appear in the Automated Software Engineering Journal, published by

Kluwer Academic Publishers, in Volume 7, year 2000

I've just arrived on Mars, with 500 days before the next return shuttle.

Fortunately, we have email and internet access to Earth (the line is fast,

but there's a twenty minute delay on average, almost like time-sharing in

the 70s). My powerbook fits fine on my lap, but slouching on the

habitat's long couch, I prefer holding a book in my hands, settling down

with gleeful anticipation with a warm drink nearby (it's -70c today). So I

brought along an armload of books, some for reference, some to read and

study again, and others to share with the next generation, as we build our

colony. All are mind-spinning, just what we need for opening a new world

with new ways of thinking.

To start, I brought along Burrough's (1998) Dragonfly: NASA and the

Crisis Aboard MIR (New York: HarperCollins Publishers), the story of the

Russian-American misadventures on MIR. An expose with almost

embarrassing detail about the inner-workings of Johnson Space Center in

Houston, this book is best read with the JSC organization chart in hand.

Here's the real world of engineering and life in extreme environments. It

makes most other accounts of "requirements analysis" appear glib and

simplistic. The book vividly portrays the sometimes harrowing

experiences of the American astronauts in the web of Russian

interpersonal relations and literally in the web of MIR's wiring. Burrough's

exposition reveals how handling bureaucratic procedures and bulky

facilities is as much a matter of moxie and goodwill as technical capability.

Lessons from MIR showed NASA that getting to Mars required a different

view of knowledge and improvisation--long-duration missions are not at





all like the scripted and pre-engineered flights of Apollo or the Space
Shuttle. Thanks to the efforts of the Human-Centered Computing group
at NASA/Ames, the days when engineers separated power, dials, and
ethernet ports on opposite sides of the Space Station are past. Why, for
our nine month voyage to Mars they even designed the kitchen table to
stay open all day7 (On the Space Station we had to stow it after every
meal to get access to storage below.)

Dragonfly shows the crazy antics of real-world operations; what's the
theoretical foundation for improving the design of complex systems?
Here I'm well-supplied. Though heavy (using half of my allotted
bookcase), I brought along Shapiro's (1992) multiple-volume
Encyclopedia of Artificial Intelligence. (New York: John Wiley and Sons.)

The technical quality of this reference is unsurpassed. Whether you're

looking for details about Hidden Markov Models or hermeneutics, it's here,

with clarity, accuracy, and good citations. Although well-versed on many

of the topics, I find myself turning to this encyclopedia for historical and

technical details. With this book for reference, we've created "intelligent"

operations assistants in the Mars habitat--built with agents and reusable

inference engines--a far cry from the monolithic computer system at

Houston's Mission Control, which was ported and changed piecemeal for

30 years (in the name of safety).

Speaking of learning from the past, rve also brought the ACM Turing

Award Lectures: The First Twenty Years 1966-1985 (New York: The ACM

Press). I came upon this volume when a friend mentioned Hoare's lecture,

"The Emperor's Old Clothes." Hoare shares his stark experience: "The

entire Elliott 503 Mark II software project had to be

abandoned...equivalent to one man's active working life, and I was

responsible, both as designer and manager, for wasting it" (p. 150).

Building on this experience, Hoare fervently appeals to us not to allow

ADA into the real world. Fortunately for me, NASA was never much for

programming fads, so we're not flying ADA on Mars. Anyway, after I

searched for Hoare's lecture on the web, I found a collection of other

Turing Award lectures and decided I wanted to read and study them all. (I

hope we'll soon get the next volume.)

Now although I'm an accomplished programmer (I'm using Visual Basic for

Applications to link the astrogeologists' datasheets and reports), my

professional role for the Mars base has gravitated to the philosophy of





engineering design. So the bulk of my Martian collection is more about
design as a creative process. Here's the core collection:

Alexander, C., et al. (1977). A pattern language. New York: Oxford

University Press.

Bamberger, J. (1991). The mind behind the musical ear. Cambridge, MA:

Harvard University Press.

SchSn, D. A. (1987). Educating the reflective practitioner. San Francisco:

Jossey-Bass Publishers.

Wilden, A. (1987). The rules are no game. New York: Routledge and

Kegan Raul.

These books are about the relation of artifacts, patterns, descriptions,

notations, designs, and the process of invention. Paraphrasing SchSn, the

topic is not how to build, but what to build. Each teaches us about the

relation of the mindmhow ideas form and are relatedmand humanity's

constructed environment. They fundamentally help us understand the

relation of individual thoughts and social contexts and how change occurs

on various scales_whether an incremental edit to a diagram, a

reperceived and reinterpreted rearrangement of parts, or a reciprocated
move in a social venture.

Alexander's book is about architectural patterns; yet really it shows how

grammar descriptions (or policies) do not strictly generate the world of

human artifacts and behavior, but serve as a kind of guide or map.

Alexander's ideas are as valuable for designing work places and software

tools, as courtyards and bedrooms. Ultimately, Alexander's claim is

epistemological: The knowledge of good design is embodied in artifacts

developed and improved in situ and can never be reduced to written

principles or laws. There are two reasons for this: First, we can always

reinterpret past successes in new contexts to articulate new heuristics,

and second, the thoughts and actions that produced the original artifacts

were not themselves bounded by descriptive rules or plans.

Unfortunately, a subgroup of software engineering has taken up the

pattern language hammer by the wrong end of the handle: Instead of

viewing the pattern perspective as an analytic, requirements analysis and





evaluation technique (for explicating the context in which a tool must
operate), they have reduced the idea to more descriptions that should be
stored in a computer and used to generate I/O behavior. This can lead to
precisely the wrong result---constraining work processes to follow a
designer's predescribed workflow regulations. Instead we should view the
patterns as improvised, situated arrangements (of facilities, deeds, and
materials) and inquire about the aspects of workplace design that enable
these patterns to develop . To apply Alexander properly, we need to view

workplace patterns as rules of thumb that reflect locally grown

relationships in tools and practices; nevertheless, as descriptions they are

of broad value for inspiring future work system design. For example,

could we develop a pattern language for computer network design in

different kinds of collaborative workplaces, such that the language

articulates dimensions of size, risk, routine, and skills being employed?

(See Clancey, 1995b, 1997b.)

Developed in the work of Bamberger and Sch6n, Alexander's ideas about

emergent organization are manifest as the "situated cognition" theory of

knowledge and behavior. The upshot is that within every human action,

there is a non-descriptive component, that is, a physical aspect that is

not modeled and planned, but a neural level of coordination that

reactivates and adapts perceptual categories, concepts, and motor

actions. Now, that's a mouthful to be sure, but Bamberger and Sch6n

unfold these ideas carefully with a series of simple examples from music

and art, showing the learner's perspective (and how this contrasts with

the teacher's terminology and curriculum). (Bamberger and Sch6n don't

really get to the neural memory level--you'll have to read my 1997 book

to see the relation.)

Dewey (1896) said all this long ago, but change is slow on Earth. In

important ways, computer science is partly responsible for the retrograde

epistemology of the 1960s and 70s. The metaphor (and success) of the

von Neumann architecture reified and reinforced ideas about memory,

knowledge, and learning that--as psychological explanationsmwere

outdated a century ago. The brain works in a different way than today's

conventional computers. The brain doesn't execute programs in a literal

way, but reactivates perceptual-motor circuits "in line" and generalizes

them at the same time. The implications are profound for software

engineers (and especially AI specialists like myself). We cannot identify

how our tools work with people (e.g., "expert systems" "knowledge





bases"), and if we want to make progress in developing computers with
human intelligence, we need a different memory-coordination mechanism
(Clancey, 1995a, 1999a). For example, the simplest interpretation of
"knowledge management"ma trendy notion in business software
todaymis based on capturing, storing, and disseminating knowledge. But
this equates knowledge with databases and modelsma mistake that
Dewey said was like confusing a carpenter with his tools.

Perhaps now you can grasp Wilden's title, "The rules are no game." By
one interpretation, the gamemhow people perceive and conceive of their
actions--is different from the rules_written procedures of how to
behave. The map is not the territory. This ultimately only makes sense
from a human cognition standpoint when you realize how wrong the
storage metaphor of knowledge is. What's neat about Wilden's book is
that he shows how these metaphors have played out in cinematic and
social-political settings. Perhaps the antagonism of conservative to liberal
political parties has its origins in hierarchical neural processes by which
conceptual systems develop: Assimilation (highlighting of general values)

and differentiation (highlighting of diversity). These ways of relating ideas

may develop in individuals as mental styles and thus different strategies

for reconciling social problems. Such a philosophical analysis only makes

sense when you realize that concepts in the human brain are not

networks of word definitions, so again "knowledge" and "reasoning"

involve real-time adaptive capabilities in people that the present-day

computer architectures do not replicate. In particular, the idea of user

models has been hampered by shortcomings in the theory of how

individuals differ cognitively. On the one hand, non-verbal aspects of

cognition are not adequately related to perception and language; and on

the other hand, differences of knowledge are reduced to variations in

descriptive models. Wilden's work is challenging because he starts with

people and real-world experience, rather than tidy theories.

Indeed, enough theory! Back to building a Martian colony. I brought

along two books to round out my collection. The first, Design at Work:

Cooperative Design of Computer Systems (edited by Greenbaum, J., &

Kyng, M., Hillsdale, NJ: Lawrence Erlbaum Associates, 1991) is an

experimental handbook, telling the story of a group of social and

cognitive scientists who put their (sometimes rhetoric-heavy) ideas to

practice. My favorite chapter is Wynn's "Taking practice seriously." I

smile every time I visualize her account of workflow diagrams, "There are





people helping this block to be what it needs to bewto name it, put it

under a heading where it will be seen as a recognizable variant, deciding

whether to leave it in or take it out, whom to convey it to" (pp. 56-57).

When you impose programmatic processes on people, you might make a

mess of the workplace. Bannon's "From social factors to social actors" is

equally provocative and mind-spinning. In fact it's all here, from interface

design to video interaction analysis, to scenario-based prototyping. Other

books tell the story and other projects do it better, but as a primer on

how to design software so it fits human purposes, this is the one I

brought to reread and exploit.

Actually, with this collection so far, I've come full circle: These are the

books that inspired our design of the Mars Arctic Research Station, an

analog experiment on Devon Island in the Canadian Arctic (M.A.R.S.,

1999). In this extreme setting, we studied scientists and engineers

investigating a Mars-like impact crater. We established a baseline for their

practices; then following the principles of design in the context of use and

in situ evaluation, we prototyped tools that would facilitate life and work

on Mars (Clancey, in press). For instance, what tools are required to log

and analyze rock samples in the field, and indeed to write journal papers

before returning home? We showed that the Internet, which provided

direct access to colleagues and the public, radically changed the role of
"Mission Control" back on Earth.

My last book, Petroski's (1985) "To engineer is human: The role of failure

in successful design" (New York: St. Martin's Press) has already been

mentioned by two fellow Desert Island readers (Dobson, 1996; Ryan,

1996). But in developing software for space exploration and dealing with

the many disasters that will face us on Mars, I want every colonist to read

this book. Basically, the book is about perspective, and provides a

hopeful way of coping with inevitable setbacks. Somehow our society has

developed an aversion to failure, making it an indicator of incapability,

rather than a stepping stone. For example, NASA's unofficial calculations

predict that of an initial crew of six going to Mars, only five will survive to

return. Society needs to be ready for that outcome. Somehow it's not

enough to remind people of the countless ships and men who were lost in

exploration just a few score years ago in searching for the Northwest

Passage (Lopez, 1986). Somehow we have the idea that things are

different now; we have perfected our methods, so mechanical parts and

software never fails. But then when it does, of course, we knock





ourselves down, and think less of our society. Maybe this stems from a

lack of external threat that would rally us to new efforts. Indeed, that's

one reason why I jumped at the chance to go to Mars. Only really difficult

challenges, where losses are inevitable, will reveal how limited our

capabilities really are. Whether it's building rockets or robots, we have

just begun.

It's a scary place here on Mars. One false move and I'm dead. A hundred

steps from the base, I'm in a cold, empty world. All our designs, our

automated systems, and our social ideas are young and forming, tenuous,

yet growing. Most of the prevalent theory about knowledge and memory

on which we build software tools for people is primitive and misleading.

And our computer architectures are just making the first steps to self-

organizing, "in place" circuitry. That's the critical and yet hopeful

attitude I want the next generation of software engineers to understand.

Computer science has just begun.

Additional References

Clancey, W. J. (1995a). AI: Inventing a New Kind of Machine. ACM

Computing Surveys, 2 7(3), 320-322.

Clancey, W. J. (1995b). Practice cannot be reduced to theory:

Knowledge, representations, and change in the workplace. In S. Bagnara &

C. Zuccermaglio & S. Stucky (Eds.), Organizational Learning and

Technological Change (pp. 16-46). Berlin: Springer. (Papers from the

NATO Workshop, Siena, Italy, September 22-26, 1992.)

Clancey, W. J. (1997a). Situated Cognition: On Human Knowledge and

Computer Representations. New York: Cambridge University Press.

Clancey, W. J. (1997b). The conceptual nature of knowledge, situations,

and activity. In P. Feltovich & R. Hoffman & K. Ford (Eds.), Human and

Machine Expertise in Context (pp. 247-291). Menlo Park, CA: The AAAI
Press.

Clancey, W. J. (1999a). Conceptual Coordination: How the Mind Orders

Experience in Time. Hillsdale, NJ: Lawrence Erlbaum Associates.





Clancey, W. J. (in press). Human exploration ethnography: The Haughton-

Mars Project 1998-1999. Proceedings of the Second Annual Meeting of

the Mars Society. Boulder, CO.

Dewey, J. ([1896] 1981). The reflex arc concept in psychology.

Psychological Review, III (July), 357-370. (Reprinted in J.J. McDermott

(ed.), The Philosophy of John Dewey, Chicago: University of Chicago

Press, pp. 136-148.)

Dobson, J. (1996). Desert Island Column. Automated Software

Engineering Journal, vol. 3, no. 1/2 June.

Lopez, B. (1986). Arctic Dreams: Imagination and Desire in a Northern

Landscape. New York: Bantam Books.

M.A.R.S. (1999). The Mars Arctic Research Station.

http://www.marssociety.org.

Ryan, K. (1996). Desert Island Column. Automated Software Engineering

Journal, vol. 3, no. 3/4, August, pps. 391-393.

Zubrin, R. and Wagner, R. (1996). The Case for Mars. The Plan to Settle

the Red Planet and Why We Must. New York: Free Press.




